

2. Processor Architecture

2.1. Clustered Architecture

 This Section briefly describes the baseline clustered
microarchitecture.

(a)

(b)

Figure 1. (a) Block diagram of the clustered
microarchitecture (b) Backend detail

 Figure 1 depicts the block diagram of the clustered
microarchitecture. A high-level picture can be seen in
Figure 1a, in which the two main parts of the processor
are distinguished: the frontend and the clustered backends.
The frontend reads IA32 instructions from the UL2,
translates them into uops and stores them in the Trace
Cache, from where they are read, decoded, renamed and
steered to any of the backends, according to a steering
policy. Figure 1b shows the details of one of the backends
(a.k.a. clusters). Each of them has its own register file,
integer and floating point issue queues and a memory
order buffer along with a data TLB and a first-level data
cache.

 uOps are first handled by the dispatch logic, where the
steering unit decides the destination cluster based on
some policy. Once the destination cluster is decided, the
logical output register is mapped into a free register
belonging to that cluster and the instruction is steered.
 After steering, instructions remain in an issue queue
until their inputs become available, and then, they are
executed and results are written back to the register file.
 Special copy instructions are generated by the dispatch
logic when an instruction requires a register value
generated in a cluster other than the one in which it will
be executed ([7], [17]). This copy uop is dispatched to the
cluster generating the value and it is in charge of sending
the data through a point-to-point link to the cluster where
the consumer resides.
 Data caches are distributed and a load can be steered
to any cluster. If there is a cache miss, the UL2 is
accessed using the memory bus and the line is written in
the cache of the cluster where the requesting load resides.
Store instructions are steered to a cluster according to the
steering policy to compute the effective address, but they
allocate a slot in all memory order buffers in order to
disambiguate stores from subsequent loads [2]. When the
store address is computed, it is sent through the
disambiguation bus and copied to all clusters, so
disambiguation can be performed locally.
 Integer and floating point instructions leave the issue
queue after being issued. Store instructions remain in the
memory order buffer until commit and loads are stored in
the memory order buffer until they are disambiguated.
After executed, instructions send a completed signal to
the reorder buffer and they can be committed once they
reach the head of the buffer.
 The monolithic implementation considered in this
paper is the equivalent to the clustered one but without
the need of communication and coherency among clusters
(basically the copy instructions and the copy scheduler
are avoided). The aggressiveness of the backends depends,
basically, on the number of them that are implemented in
each particular configuration.

2.2. Power Model

 This Section introduces both the dynamic and the
leakage power model that we have utilized to carry out
the experiments.
 The dynamic power model is very similar to those
existing in the literature [5]. Basically, an activity counter
is associated to each functional block (e.g. register files,
data cache, etc) and it is incremented in each block
operation. In order to compute the energy, the activity
counter is multiplied by its corresponding energy-per-
operation value (obtained from the physical design or an
analytical model). An aggressive clock gating technique
is assumed: unused structures just dissipate 10% of their

